a2 United States Patent

Timmireddy et al.

US009465903B1

US 9,465,903 B1
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)
")

@
(22)

(1)

(52)

(58)

PROGRAMMABLE IC DESIGN CREATION

USING CIRCUIT BOARD DATA

Applicant: Xilinx, Inc., San Jose, CA (US)

Inventors: Suman Kumar Timmireddy,

Hyderabad (IN); Heera Nand, Alwar
(IN); Awdhesh Kumar Sahu, Deonagar

IN); Brendan M. O’Higgins,
2g

Sunnyvale, CA (US); David A. Knol,
Morgan Hill, CA (US); Siddharth Rele,
Navi Mumbai (IN)

Assignee:

Notice:

XILINX, INC., San Jose, CA (US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 31 days.

Appl. No.: 14/546,684

Filed:

Int. CL.
GO6F 17/50
GO6F 19/00
HO3K 19/177
GO6F 21/12
GO6F 15/78

U.S. CL
CPC

Nov. 18, 2014

(2006.01)
(2011.01)
(2006.01)
(2013.01)
(2006.01)

GO6F 17/5077 (2013.01); GO6F 17/50

(2013.01); GO6F 15/7867 (2013.01); GOGF
17/5022 (2013.01); GO6F 17/5054 (2013.01);
GO6F 19/3406 (2013.01); GOGF 21/125
(2013.01); HO3K 19/17728 (2013.01); HO3K

Field of Classification Search

CPC

19/17748 (2013.01)

GOGF 17/5054; GOGF 15/7867; GOGF

19/3406; GOGF 17/50; GOGF 21/125; GOGF
8/447; GOG6F 17/5022; HO3K 19/17728;

USPC

HO3K 19/17748

716/137

See application file for complete search history.

00

~

(56) References Cited

U.S. PATENT DOCUMENTS

6,094,063 A * 7/2000 St. Pierre, Jr. ... HO3K 19/01858
326/37

6,175,530 B1* 1/2001 Theroncccouen.. GO6F 1/30
365/201

6,308,311 B1* 10/2001 Carmichael GO6F 15/7867
716/117

6,351,809 B1* 2/2002 St. Pierre, Jr. ... GO6F 13/4068
710/10

6,487,618 B1* 11/2002 Theron GO6F 13/4286
710/105

6,499,134 B1* 12/2002 Buffet GO6F 17/5077
716/113

6,560,665 B1* 5/2003 Resler GO6F 15/7814
710/305

6,631,520 B1* 10/2003 Theroncccoe... GO6F 8/65
712/E9.007

6,903,574 B2* 6/2005 Chenccooovvee.. G11C 5/066
326/40

7,243,314 B2* 7/2007 Tingcocovvrneneee. GO6F 17/5077
716/111

(Continued)

Primary Examiner — Helen Rossoshek
(74) Attorney, Agent, or Firm — Robert M. Brush

57 ABSTRACT

A method of implementing a circuit design in a circuit
design tool for configuration in a programmable integrated
circuit (IC) connected to components on a circuit board is
described. The method includes processing a first file asso-
ciated with the circuit board to obtain descriptions of circuit
board interfaces of the components on the circuit board;
displaying a graphic user interface (GUI) of the circuit
design tool to connect a circuit board interface described in
the first file with a circuit design interface in the circuit
design; generating physical constraints on the circuit design
interface with respect to input/outputs of the programmable
IC described as being connected to the selected circuit board
interface; and generating a bitstream to configure the pro-
grammable IC. The bitstream includes a physical implemen-
tation of the circuit design satistfying the physical con-
straints.

17 Claims, 8 Drawing Sheets

Gt Dosign Too 202
\DE 303
eiface Enumerator Z31 Project Fles
Ei-
o Custorlzer 334 CiouT Doagn
Board Stlcher 38
Modua Intariace Tracer 240 mplementaton
Fies
20
Design Entry
ELY Constait Fles
0
e
£ Consiraints
4
Physical —
Y
Board Fles
[& | E

D
Biisream Generator
In-memory Design
Database
0

GUI
14

May
26
328
30
tab:

Library 322
Vodi

Flles
25

US 9,465,903 B1
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

7,290,237 B2* 10/2007
7,433,813 B1* 10/2008
7,640,527 B1* 12/2009
8,001,509 B2* 82011

8,091,056 B1* 1/2012

Perry ..o GOGF 17/5054
326/41

Ballagh GOGF 17/5022
326/39

Dorairaj GOG6F 17/5072
716/139

Perry ..o GOGF 17/5045
716/116

Campbell GOGF 17/5054
716/102

8,356,266 B1*
8,739,088 B1*
2002/0108094 Al*
2002/0199110 A1*
2008/0270805 Al*

2015/0324509 Al*

* cited by examiner

1/2013

5/2014

8/2002

12/2002

10/2008

11/2015

Ou i, GO6F 17/5072
716/104
Ou i, GO6F 17/5045
716/106
Scurry o GO6F 17/5022
716/102
Kean GO6F 17/5054
713/189
Kean GO6F 17/5054
713/189
Xue . GO6F 17/5072
716/116

US 9,465,903 B1

U.S. Patent Oct. 11, 2016 Sheet 1 of 8
Computel’ m Support
Circuits
104
|O Devices CPU
112 e nin Y
[o]
Display Interface
14 106 Memory 108
» . . N
GUI Circuit Design
116 > Tool Code
110
I
Circuit Board
118
————— |
Programmable | |
IC I Components ||
120 ozl
I |
I |
I |
Components | Daughter |
122 | Board(s) :
o 11
L _ __9_ —_d

FIG. 1

US 9,465,903 B1

Sheet 2 of 8

Oct. 11, 2016

U.S. Patent

Z 'Ol e

701 | 101

T
) INI

I

<o =
o
NI
\..
5
(_
N|o
N(\l
@ | =
) S
OCD

11N}

01020 S0C2SH0010 / $OIANOD

]
(=

I T O O O O 3P
I O <0¢ 58719 1

__%?ég__ []

£0¢ SWvdg

¢ O0dd L 202 $410 -

=<
z&lr_—,

.
|
_________—:_\
o)
ol S ey
SEEE
[72]
oD
Aal{=taia
|§|w
UmOD

4
€0¢ SWvdd

|
|
=
|
]

90¢ 10 £0¢ 1

o0z —" K B _

60¢ NOILNGIY1SIA ¥O0T2 / OIANOD K

U.S. Patent

Oct. 11, 2016

300

Circuit Design Tool 302

IDE 303

Interface Enumerator 331

Sheet 3 of 8

US 9,465,903 B1

Constraint Generator 332

Module Customizer 334

A

Project Files
315

Interface Group Checker 336

Board Stitcher 33

Module Interface Tracer 340

A

A

Circuit Design
Files
318

Design Entry
304

Synthesis
306

Physical Implementation
308

Map
326

PAR
328

Bitstream Generator
330

In-memory Design
Database
309

GUI

314

Implementation
Files
320

Constraint Files
310

A

Y

Physical
Constraints
324

a

A

Y

Board Files
316

Library 322

Module
Files
325

FIG. 3

U.S. Patent

Oct. 11, 2016 Sheet 4 of 8

US 9,465,903 B1

Board File 316

Description(s) 401

Interface Name 402

Interface-to-Programmable IC
Mapping 404

Other Attribute(s) 406

Module Parameters 408

Group Indicator(s) 410

Daughter Board Connector
Indicator(s)
414

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 5 of 8 US 9,465,903 B1

401(1)

Interface name = dip switches 4bits
Type = interface:gpioc rtl:1.0
Mode = Master
PortMapping:
TRI I = dip switches 4bits tri i

Pin 0 (iostandard="LVCMOS25”, loc="RAK25")
Pin 1 (iostandard=”"LVCMOS25”, loc="K1l5")
Pin 2 (iostandard="LVCMOS25”, loc="R27")
Pin 3 (iostandard="LVCMOS25”, loc="T12")
506
| 508
Mggzle E‘é ext_dip_switches_4bits

L 502

set property LOC AK25 [get ports ext dip switches 4bits port|
set property LOC K15 [get ports ext dip switches 4bits port[l
set_property LOC R27 [get ports ext dip switches_4bits port[2
set_property LOC Tl2 [get ports ext_dip switches_4bits port[3]]

set _property IOSTANDARD LVCMCS25 [get ports ext dip switches 4bits port[0]]
set property IOSTANDARD LVCMOS25 [get ports ext dip switches 4bits port[1]]
set property IOSTANDARD LVCMOS25 [get ports ext dip switches 4bits port[2]]
set property IOSTANDARD LVCMOS25 [get ports ext dip switches 4bits port[3]]

L510

011
1]
11

FIG. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 8 US 9,465,903 B1

410(1)

¢

Group 1l: ethernetlite 1
Interfacel = MII 1
Interfacez = MDIO MDC 1

Group 2: ethernetlite 2
Interfacel = MII 2
Interface2 = MDIO MDC 2

Module MII_1 Ethernetlite1
604 - > > 608
MDIO_MDC_1
MII_2 Ethernetlite?
> 610
MDIO_MDC_2

k 606

k 601

FIG. 6

U.S. Patent Oct. 11, 2016 Sheet 7 of 8 US 9,465,903 B1

700

~

Process board file to obtain descriptions of circuit board
interfaces = 702

Merge board files for daughter board(s)

Display GUI to connect circuit board interface(s) as

described in the board file to circuit design interface(s)
- 704

Infer circuit design interface(s) from module
interface(s) I T

Enumerate circuit design interfaces and
circuit board interfaces TN 718

Generate physical constraints on the circuit design
interface(s) with respect to programmable IC input/
outputs described as being connected to the selected
circuit board interface(s)

Generate a bitstream to configure programmable IC ~ [™~< 719
having a physical implementation satisfying the physical
constraints

FIG. 7

U.S. Patent Oct. 11, 2016 Sheet 8 of 8 US 9,465,903 B1

716

|dentify module interface(s) of a module in the circuit
deSign N\ 802

Identify top-level ports in the circuit design connected to

the module interface(s) 804

Group identified top-level ports into circuit design I~
interface(s) 806

FIG. 8

US 9,465,903 Bl

1
PROGRAMMABLE IC DESIGN CREATION
USING CIRCUIT BOARD DATA

TECHNICAL FIELD

Examples of the present disclosure generally relate to
electronic circuit design and, in particular, to programmable
integrated circuit (IC) design creation using circuit board
data.

BACKGROUND

Circuit designs for programmable integrated circuits (pro-
grammable ICs) can be generated using a variety of tech-
niques. In some examples, designers can write register-
transfer level (RTL) code, write program-language code,
create schematic representations, or a combination thereof to
design a circuit for implementation in a target programmable
IC device. Circuit design implementation includes compil-
ing or otherwise processing the design for configuration in
a target programmable C. The target programmable IC
device can be a field programmable gate array (FPGA),
complex programmable logic device (CPLD), or the like. In
the design tflow, a designer creates a description of the circuit
design, which is then processed through one or more steps
that transform the description into a physical implementa-
tion of the circuit design for a target programmable IC
device.

A programmable IC can be attached to a circuit board
having a plurality of components. The programmable IC can
connect to the components through conductive traces on the
circuit board. The circuit board components can include, for
example, memories, input/output devices, light-emitting
diodes (LEDs), or the like. A circuit design can include
interfaces to be coupled to compatible interfaces of compo-
nents on the circuit board. The presence of these interfaces
can make the circuit design process more complex.

SUMMARY

Techniques for programmable integrated circuit (IC)
design creation using circuit board data are described. In an
example, a method of implementing a circuit design in a
circuit design tool for configuration in a programmable
integrated circuit (IC) connected to components on a circuit
board is described. The method includes processing a first
file associated with the circuit board to obtain descriptions of
circuit board interfaces of the components on the circuit
board; displaying a graphic user interface (GUI) of the
circuit design tool to connect a circuit board interface
described in the first file with a circuit design interface in the
circuit design; generating physical constraints on the circuit
design interface with respect to input/outputs of the pro-
grammable IC described as being connected to the selected
circuit board interface; and generating a bitstream to con-
figure the programmable IC. The bitstream includes a physi-
cal implementation of the circuit design satisfying the physi-
cal constraints.

In another example, a non-transitory computer readable
medium comprises instructions, which when executed in a
computer system, cause the computer system to carry out a
method of implementing a circuit design in a circuit design
tool for configuration in a programmable integrated circuit
(IC) connected to components on a circuit board. The
method includes processing a first file associated with the
circuit board to obtain descriptions of circuit board inter-
faces of the components on the circuit board; displaying a

10

15

20

25

30

35

40

45

50

55

60

65

2

graphic user interface (GUI) of the circuit design tool to
connect a circuit board interface described in the first file
with a circuit design interface in the circuit design; gener-
ating physical constraints on the circuit design interface with
respect to input/outputs of the programmable IC described
as being connected to the selected circuit board interface;
and generating a bitstream to configure the programmable
IC. The bitstream includes a physical implementation of the
circuit design satistying the physical constraints.

In another example, a circuit design system includes a
memory to store circuit design tool code and a central
processing unit (CPU) that executes the circuit design tool
code to: process a first file associated with a circuit board to
obtain descriptions of circuit board interfaces of components
on the circuit board; display a graphic user interface (GUI)
to connect a circuit board interface described in the first file
with a circuit design interface in a circuit design; generate
physical constraints on the circuit design interface with
respect to input/outputs of a programmable IC described as
being connected to the selected circuit board interface; and
generate a bitstream to configure the programmable IC. The
bitstream includes a physical implementation of the circuit
design satisfying the physical constraints.

These and other aspects may be understood with reference
to the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features can
be understood in detail, a more particular description, briefly
summarized above, may be had by reference to example
implementations, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical example imple-
mentations and are therefore not to be considered limiting of
its scope.

FIG. 1 is a block diagram depicting an example of a
circuit design system.

FIG. 2 illustrates an example of a field programmable gate
array (FPGA).

FIG. 3 is a block diagram shown a logical view of the
circuit design system of FIG. 1.

FIG. 4 is a block diagram depicting an example structure
of a board file.

FIG. 5 shows an example of constraint generation per-
formed by a constraint generator.

FIG. 6 shows an example of group checking performed by
an interface group checker.

FIG. 7 is a flow diagram depicting an example of a
method of implementing a circuit design in a circuit design
tool.

FIG. 8 is a flow diagram depicting an example of a
method of inferring circuit design interfaces.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical
elements that are common to the figures. It is contemplated
that elements of one example may be beneficially incorpo-
rated in other examples.

DETAILED DESCRIPTION

Techniques for programmable integrated circuit (IC)
design creation using circuit board data are described. A
circuit design tool can be used to specity a circuit design,
compile the circuit design to produce a physical implemen-
tation for a target programmable IC, and generate a bit-
stream to configure the physical implementation in the

US 9,465,903 Bl

3

programmable IC. In order to correctly generate the bit-
stream, the circuit design tool accounts for physical con-
straints on the circuit design, such as input/output (IO)
package pin locations, IO signal standards, and the like.
When the circuit design includes interfaces coupled to
interfaces of components on a circuit board, the physical
constraints depend on the connections between circuit board
components and the programmable IC.

Accordingly, techniques described herein provide a data
file (“circuit board file” or “board file”) and data file format
for describing circuit board components and interfaces.
Techniques for making use of the circuit board files during
circuit design implementation are also described. In general,
a circuit board file include descriptions of the components
and component interfaces, which enables the circuit design
tool to generate physical constraints for connections
between the circuit design and the circuit board components.
The circuit board file can specify parameters associated with
the circuit board components, which the circuit design tool
can use to customize modules in the circuit design, such as
parameterized intellectual property (IP) blocks. The circuit
board file can specity groups of related circuit board inter-
faces, which the circuit design tool can use to ensure
modules in the circuit design are correctly connected to the
circuit board components. The circuit design tool can stitch
circuit boards, such as a main circuit board and a daughter
circuit board, by merging multiple circuit board files. The
circuit design tool includes a graphical user interface (GUI)
that can enumerate circuit board interfaces and circuit design
interfaces, allowing selected connections therebetween. The
circuit design tool can infer circuit design interfaces that can
be connected to circuit board interfaces from module inter-
faces in the circuit design. These and further aspects of the
present disclosure are discussed below.

FIG. 1 is a block diagram depicting an example of a
circuit design system 100. The circuit design system 100
includes a computer 101 coupled to input/output (1O)
devices 112, a display 114, and a circuit board 118 having a
programmable IC 120. The computer 101 includes a central
processing unit (CPU) 102, a memory 108, various support
circuits 104, and an IO interface 106. The CPU 102 can
include one or more microprocessors. The support circuits
104 can include conventional cache, power supplies, clock
circuits, data registers, 10 interfaces, and the like. The 10
interface 106 can be directly coupled to the memory 108 or
coupled through the CPU 102. The IO interface 106 can be
coupled to the IO devices 112, which can include conven-
tional keyboard, mouse, and the like. The IO interface 106
can also be coupled to the display 114, which can present a
GUI 116 to a user.

The memory 108 may store all or portions of one or more
programs and/or data to implement aspects of the circuit
design system 100 described herein. For example, the
memory 108 can store circuit design tool code 110 that is
executable by the CPU 102 to implement a circuit design
tool, which is described below. The memory 108 can include
one or more of random access memory (RAM), read only
memory (ROM), magnetic read/write memory, FLASH
memory, solid state memory, or the like, as well as combi-
nations thereof.

The circuit board 118 includes components 122 coupled
to the programmable IC 120 through traces on the circuit
board 118. The components 122 can include, for example,
memories, 10 devices, LEDs, buttons, switches, connectors,
and the like. The circuit board 118 can connect to the
computer 101 through the 1O interface 106. The computer
101 can load a bitstream into the programmable IC 120 to

10

20

25

30

35

40

45

50

55

60

65

4

configure a circuit therein. In some examples, the circuit
board 118 can be connected to one or more daughter circuit
boards 119. The daughter circuit board(s) 119 include com-
ponents 124 coupled to the programmable IC 120 through
traces and connectors on the daughter board(s) 119 and the
circuit board 118. The components 124 can include similar
devices as the components 122. In some examples, the
circuit board 118 can include multiple programmable ICs
mounted thereon and connected to the components 122 and
optionally the components 124.

FIG. 2 illustrates an example of an FPGA 200. The FPGA
200 can be used as the programmable IC 120 on the circuit
board 118. The FPGA 200 includes a programmable fabric
that includes a large number of different programmable tiles
including multi-gigabit transceivers (“MGTs”) 201, con-
figurable logic blocks (“CLBs”) 202, random access
memory blocks (“BRAMs™) 203, input/output blocks
(“IOBs™) 204, configuration and clocking logic (“CONFIG/
CLOCKS”) 205, digital signal processing blocks (“DSPs”)
206, specialized input/output blocks (“I/O”) 207 (e.g., con-
figuration ports and clock ports), and other programmable
logic 208 such as digital clock managers, analog-to-digital
converters, system monitoring logic, and so forth. Some
FPGAs also include dedicated processor blocks (“PROC”)
210.

In some FPGAs, each programmable tile can include at
least one programmable interconnect element (“INT”) 211
having connections to input and output terminals 220 of a
programmable logic element within the same tile, as shown
by examples included at the top of FIG. 2. Each program-
mable interconnect element 211 can also include connec-
tions to interconnect segments 222 of adjacent program-
mable interconnect element(s) in the same tile or other
tile(s). Each programmable interconnect element 211 can
also include connections to interconnect segments 224 of
general routing resources between logic blocks (not shown).
The general routing resources can include routing channels
between logic blocks (not shown) comprising tracks of
interconnect segments (e.g., interconnect segments 224) and
switch blocks (not shown) for connecting interconnect seg-
ments. The interconnect segments of the general routing
resources (e.g., interconnect segments 224) can span one or
more logic blocks. The programmable interconnect elements
211 taken together with the general routing resources imple-
ment a programmable interconnect structure (“program-
mable interconnect”) for the illustrated FPGA. Each pro-
grammable interconnect element 211 can include an
interconnect circuit that can implement various types of
switching among input interconnect segments and output
interconnect segments, such as cross-point switching, break-
point switching, multiplexed switching, and the like.

In an example, a CLB 202 can include a configurable
logic element (“CLE”) 212 that can be programmed to
implement user logic plus a single programmable intercon-
nect element (“INT”) 211. A BRAM 203 can include a
BRAM logic element (“BRL”) 213 in addition to one or
more programmable interconnect elements. Typically, the
number of interconnect elements included in a tile depends
on the height of the tile. In the pictured example, a BRAM
tile has the same height as five CLBs, but other numbers
(e.g., four) can also be used. A DSP tile 206 can include a
DSP logic element (“DSPL”) 214 in addition to an appro-
priate number of programmable interconnect elements. An
10B 204 can include, for example, two instances of an
input/output logic element (“IOL”) 215 in addition to one
instance of the programmable interconnect element 211. As
will be clear to those of skill in the art, the actual I/O pads

US 9,465,903 Bl

5

connected, for example, to the I/O logic element 215 typi-
cally are not confined to the area of the input/output logic
element 215.

In the pictured example, a horizontal area near the center
of'the die (shown in FIG. 2) is used for configuration, clock,
and other control logic. Vertical columns 209 extending
from this horizontal area or column are used to distribute the
clocks and configuration signals across the breadth of the
FPGA.

Some FPGAs utilizing the architecture illustrated in FIG.
2 include additional logic blocks that disrupt the regular
columnar structure making up a large part of the FPGA. The
additional logic blocks can be programmable blocks and/or
dedicated logic. For example, processor block 210 spans
several columns of CL.Bs and BRAMSs. The processor block
210 can various components ranging from a single micro-
processor to a complete programmable processing system of
microprocessor(s), memory controllers, peripherals, and the
like.

Note that FIG. 2 is intended to illustrate only an exem-
plary FPGA architecture. For example, the numbers of logic
blocks in a row, the relative width of the rows, the number
and order of rows, the types of logic blocks included in the
rows, the relative sizes of the logic blocks, and the inter-
connect/logic implementations included at the top of FIG. 2
are purely exemplary. For example, in an actual FPGA more
than one adjacent row of CLBs is typically included wher-
ever the CLBs appear, to facilitate the efficient implemen-
tation of user logic, but the number of adjacent CLB rows
varies with the overall size of the FPGA. Moreover, the
FPGA of FIG. 2 illustrates one example of a programmable
IC that can employ examples of the interconnect circuits
described herein. The interconnect circuits described herein
can be used in other types of programmable ICs, such as
complex programmable logic devices (CPLDs) or any type
of programmable IC having a programmable interconnect
structure for selectively coupling logic elements.

FIG. 3 is a block diagram shown a logical view 300 of the
circuit design system 100 of FIG. 1. The circuit design
system 100 includes a circuit design tool 302 having an
integrated development environment (IDE) module 303, a
design entry module 304, a synthesis module 306, a physical
implementation module 308, and a graphical user interface
(GUI) 314. The modules 303, 304, 306, and 308 are just one
example implementation of the circuit design tool 302. The
functions performed by the modules 303, 304, 306, and 308
described herein can be performed by a different configu-
ration of one or more modules in the circuit design tool 302.
The circuit design tool 302 can be implemented by circuitry
that is part of an electronic system, by firmware in the
electronic system, by software in the electronic system, or
by a combination thereof. An example electronic system in
which the circuit design system 100 can be implemented is
described above in FIG. 1.

In general, the circuit design system 100 generates an
abstract description of the circuit design, which is processed
into a physical description of the circuit design for a par-
ticular target programmable IC. The circuit design system
100 can process the abstract description of the circuit design
through various intermediate transformations to produce the
physical description of the circuit design for a target pro-
grammable IC. The physical description of the circuit design
can be formatted and loaded into a programmable IC to
produce a physical circuit. Thus, the circuit design system
100 transforms an abstract representation of the circuit
design (the abstract description) into a physical representa-

20

30

40

45

55

6

tion of the circuit design (the physical description) that can
be formatted to realize a physical circuit in a programmable
1C.

A user can interact with the circuit design tool 302 to
produce project files 315, circuit design files 318, constraint
files 310, and implementation files 320. The project files 315
include one or more files specifying project settings for each
circuit design. For example, the project files 315 can specify
attributes for target hardware of a circuit design, such as a
type of programmable IC in the target hardware, a model of
the programmable IC, a speed grade of the programmable
IC, a number of 1O ports of the programmable IC, and the
like. The circuit design files 318 include one or more files
specifying each circuit design at various levels of abstrac-
tion, such as a high-level block model of the circuit design,
a lower level hardware description language (HDL) model
of'the circuit design, or the like. In general, the circuit design
files 318 have little or no dependence on the target program-
mable IC. The constraint files 310 provide design constraints
on the circuit design. Design constraints include require-
ments that must be met in order for the circuit design to be
functional. The constraint files 310 include physical con-
straints 324, which are constraints on the physical imple-
mentation of the circuit design. The constraint files 310 can
include other types of constraints, such as timing constraints,
configuration constraints, and the like. The circuit design
tool 302 processes the circuit design files 318 and the
constraint files 310 to generate the implementation files 320.
The implementation files 320 include one or more files
specifying each circuit design with varying dependence of
the target programmable IC. For example, the implementa-
tion files 320 can include a synthesized netlist, a mapped,
placed, and routed netlist, configuration bitstreams, and the
like.

In some examples, the circuit design tool 302 can main-
tain an in-memory design database 309. The in-memory
design database 309 includes one or more representations of
the circuit design (e.g., functional representations, logical
representations, physical representations, etc.) in memory as
the design is processed. The state of the circuit design within
the in-memory design database 309 can be saved into the
circuit design files 318, the implementation files 320, and the
constraint files 310 periodically using design checkpoint
operations.

The IDE module 303 provides a user interface through the
GUI 314 to assemble, implement, and validate a circuit
design for a programmable IC. The IDE module 303 con-
trols the overall circuit design process, including invocation
of the design entry module 304, the synthesis module 306,
and the physical implementation module 308.

The design entry module 304 generates a functional
description of the circuit design in response to user input
through the GUI 314. The functional description can include
descriptions for a plurality of circuit components, such as
flip-flops, memories, logic gates, processors, and the like,
coupled together by connections (referred to as “nets” or
“signals™). The functional description can include a register
transfer level (RTL) description specified using a circuit
design language (e.g., a hardware description language
(HDL)) and/or specified schematically. The functional
description can include a high-level model description speci-
fied using a program language, such as C, C++, JAVA, or the
like, and/or specified schematically. The functional descrip-
tion can include a combination of RTL and high-level model
descriptions. The GUI 314 can include a graphic interface
through which an end user connects symbols and blocks
representing various components to produce a schematic of

US 9,465,903 Bl

7

the circuit design. The GUI 314 can include a text interface
through which a user writes HDL/program language code.
The GUI 314 can employ a combination of schematic and
text-based entry. In some examples, the design entry module
304 can access a library 322 having a plurality of circuit
components. The library 322 can include module files 325
that include descriptions of circuit modules referred to as
intellectual property (IP) cores. The functional description
can be stored in one or more of the circuit design files 318,
as well as in the in-memory design database 309.

The synthesis module 306 produces a logical implemen-
tation of the circuit design from the functional description.
The logical implementation of the circuit design includes a
logical representation of the circuit design in terms of
specific logic elements. For example, the synthesis module
306 can perform “technology mapping” that transforms
generic circuit elements into technology-specific circuit ele-
ments. For example, the logical implementation can include
a representation of the circuit design in terms of specific
logic elements optimized to the architecture of a program-
mable IC, such as lookup tables (LUTs), carry logic, 10
buffers, and like technology-specific components. In another
example, the logical implementation can include a repre-
sentation of the circuit design in terms of logic gates,
flip-flops, and the like. The logical implementation can be
stored in one or more of the implementation files 320, as
well as in the in-memory design database 309.

The physical implementation module 308 produces a
physical implementation of the circuit design from the
logical implementation. The physical implementation of the
circuit design is a physical representation of the circuit
design for implementation in a target programmable IC. For
example, the physical implementation module 308 can
include a map module 326, a place-and-route (PAR) module
328, and a bitstream generator 330. The map module 326
maps the logic elements in the logical implementation onto
primitive components within the target programmable IC.
The PAR module 328 places the mapped primitive compo-
nents within the target programmable IC and routes inter-
connects between the placed primitive components. The
bitstream generator 330 generates a configuration bitstream
for implementing the circuit design in a target program-
mable IC. The physical implementation can be stored in one
or more of the implementation files 320, as well as in the
in-memory design database 309.

The circuit design tool 302 also has access to board files
316. Each of the board files 316 relates to a particular
combination of programmable IC(s) and a circuit board
having various components. Each of the board files 316 can
include descriptions of interfaces to circuit board compo-
nents (“circuit board interfaces”). Each description of a
circuit board interface can include various types of infor-
mation.

FIG. 4 is a block diagram depicting an example structure
of a board file 316. The board file 316 includes one or more
descriptions 401 of circuit board interfaces. Each of the
description(s) 401 includes at least an interface name 402
and an interface-to-programmable IC mapping 404. The
interface name 402 uniquely identifies a circuit board inter-
face. The interface-to-programmable IC mapping 404
includes a relation between the circuit board interface and
the package pins of the programmable IC(s) on the board. As
described herein, the descriptions 401 can be used by the
circuit design tool 302 to generate physical constraints for
the circuit design.

In various examples, each of the description(s) 401 can
include other types of information. For example, a descrip-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion 401 can include other attribute(s) 406 of the circuit
board interface, such as interface type, interface mode, and
the like. A description 401 can include module parameters
408 for use in customizing modules of the circuit design
(e.g., parameterized IP cores).

The board file 316 can include other types of information
related to the circuit board interfaces defined by the descrip-
tions 401. In an example, the board file 316 can include
group indicator(s) 410. Each group indicator 410 indicates a
particular group of circuit board interfaces. The circuit board
interfaces in a given group can be related such that their use
is constrained in some way (e.g., all circuit board interfaces
in a give group must be connected to the same module in the
circuit design). In another example, the board file 316 can
include daughter board connection indicator(s) 414. Each of
the daughter board connection indicator(s) 414 can indicate
a connector for receiving a daughter circuit board, allowing
circuit board interfaces of the daughter circuit board to be
mapped to package pins of the programmable 1C(s) through
the connector. As described herein, the circuit design tool
302 can stitch together multiple board files to create a
combined board file for a circuit board and daughter board
(s).

Returning to FIG. 3, a user can indicate to the circuit
design tool 302 that the circuit design is for a target circuit
board. The circuit design tool 302 can then access the board
files 316 to obtain one or more board files for the circuit
board. The IDE module 303 can include one or more
modules for processing board file(s), which are described
below. Although the board processing modules are described
as being part of the IDE module 303, the functions per-
formed by the modules can be performed by other module(s)
in the circuit design tool 302. The IDE module 303 includes
an interface enumerator 331, a constraint generator 332, a
module customizer 334, an interface group checker 336, a
board stitcher 338, and a module interface tracer 340.

The interface enumerator 331 cooperates with the GUI
314 to enumerate the circuit board interfaces as described in
the board file(s). The interface enumerator 331 can list some
or all of the circuit board interfaces using various GUI
elements, such as drop-down boxes, text fields, tree views,
and the like. A user can select a circuit board interface
through the GUI 314 and retrieve information about the
circuit board interface, which the interface enumerator 331
obtains from the corresponding description in the board file.
In addition, the interface enumerator 331 can allow the user
to create an instance of a module in the circuit design that is
compatible with a given circuit board interface. The inter-
face enumerator 331 can enumerate module(s) compatible
with each circuit board interface using various GUI ele-
ments. If the user creates an instance of a compatible
module, the interface enumerator 331 can connect the circuit
board interface to a circuit design interface created for the
compatible module.

The module customizer 334 can set parameters of a given
module in the circuit design based on customized parameters
in a description of a circuit board interface connected to the
given module. For example, a description of a circuit board
interface can specify a bus width, a data rate, a clock
frequency, or the like for a module connected to the circuit
board interface. The module customizer 334 can set the
parameters of the connected module from this information.
The module customizer 334 can set parameters of an
instance of a module created by the interface enumerator
331 as described above. The module customizer 334 can
also set parameters of an instance of a module that has
already been created in the circuit design.

US 9,465,903 Bl

9

The constraint generator 332 generates physical con-
straints for the circuit design based on the connection(s)
established between circuit design interface(s) and circuit
board interface(s). The physical constraints can include at
least a mapping between the circuit design interface(s) and
input/outputs of a programmable IC described as being
connected to the circuit board interface(s). The mapping can
include one or more attributes, such as package pin location,
10 standard, and the like.

FIG. 5 shows an example of constraint generation per-
formed by the constraint generator 332. A description 401(1)
of a circuit board interface having an “Interface_name” of
“dip_switches_4bits” is defined in a board file. The descrip-
tion 401(1) indicates that the “Type” of the circuit board
interface is “interface:gpio_rtl:1.0” and that the “Mode” of
the circuit board interface is “Master”. The “Type” and
“Mode” are examples of the other attribute(s) 406. The
description 401(1) includes a “PortMapping” that defines
which pins of the dip_switches_4bits interface are connected
to which package pins of a programmable IC and are using
a particular 1O standard. In the example, “Pin 0” is con-
nected to package pin “AK25”, “Pin 1” is connected to
package pin “K15”, “Pin 2” is connected to package pin
“R27”, and “Pin 3” is connected to package pin “T12”. All
pins of the dip_switches_4bits circuit board interface use the
10 standard designated “LVCMOS25”.

A circuit design 502 includes a module 504 having a gpio
interface 506 connected to a circuit design interface 508
designated “ext_dip_switches_4bits”. A user can connect the
circuit design interface “ext_dip_switches_4bits™ to the cir-
cuit board interface “dip_switches_4bits” as described
above. In response, the constraint generator 332 generates
physical constraints 510. In the present example, the physi-
cal constraints 510 are specified in the format “set_property
<property> <value> <object list>", although the constraints
can be expressed in other ways. The package pins, denoted
by the property LOC, are assigned to the specific ports of the
circuit design interface ext_dip_switches_4bits based on the
description 401(1). That is, “port[0]” of the circuit design
interface is assigned to package pin “AK25”, which is
connected to “Pin 0” of the circuit board interface
dip_switches_4bits. Next, “port[1]” of the circuit design
interface is assigned to package pin “K15”, which is con-
nected to “Pin 1” of the circuit board interface
dip_switches_4bits. Next, “port[2]” of the circuit design
interface is assigned to package pin “R27”, which is con-
nected to “Pin 2” of the circuit board interface
dip_switches_4bits. Next, “port[3]” of the circuit design
interface is assigned to package pin “T12”, which is con-
nected to “Pin 3” of the circuit board interface
dip_switches_4bits. All ports of the circuit design interface
are configured with the 10 standard “LVCMOS25” as speci-
fied in the description 401(1).

Returning to FIG. 3, the interface group checker 336
checks connections between circuit design interfaces and
circuit board interfaces to verify that no group constraints
are violated. As noted above, a board file can specity a group
of circuit board interfaces that can be constrained for con-
nection to the same module. The interface group checker
336 can determine if circuit design interfaces connected to
a module in the circuit design are connected to circuit board
interfaces from different groups and, if so, indicate an error
to the user through the GUI 314.

FIG. 6 shows an example of group checking performed by
the interface group checker 336. A group indicator 410(1) in
a board file can specify two groups of circuit board inter-
faces designated “Group 1” for the circuit board component

10

20

25

30

35

40

45

50

55

60

65

10

“ethernetlite_1", and “Group 2” for the circuit board com-
ponent “ethernetlite_2”. Group 1 includes circuit board
interfaces “MII_1” and “MDIO_MDC_1" for the ether-
netlite_1 component. Group 2 includes circuit board inter-
faces “MII_2” and “MDIO_MDC _2” for the ethernetlite_2
component. The groups indicate that it is not valid to connect
a module to one interface from ethernetlite_1 and another
interface from ethernetlite_2. A logical view 601 of the
circuit board shows a programmable IC 606 coupled to
components 608 and 610 for the ethernetlitel and ether-
netlite2 board components. The programmable IC 606
includes a module 604 of the circuit design configured
therein. The circuit design specifies that the module 604 is
coupled to the MII_1 and MDIO_MDC_1 circuit board
interfaces, which is a valid configuration. If the circuit
design specified that the module 604 was instead coupled to
the MII_1 circuit board interface and the MDIO_MDC_2
circuit board interface, the interface group checker 336 can
indicate an error to the user.

Returning to FIG. 3, the board stitcher 338 can be invoked
to combine board files in cases where the user has specified
a circuit board and one or more connected daughter boards.
The board stitcher 338 can obtain board files for the circuit
board and the daughter board(s) and generate a combined
board file. As noted above, a circuit board can include
connector(s) that can be used to make connections to daugh-
ter board(s). The daughter board(s) can obtain additional
components and potentially additional programmable IC(s).
Each board file can specify daughter board connector indi-
cator(s). The board stitcher 338 can match daughter board
connector indicator(s) to merge a plurality of board files.

In some examples, a user can create instance(s) of module
(s) in the circuit design external to the interface enumerator
331. The module interface tracer 340 can identify a module
interface a given module within the circuit design and
expose the module interface as a circuit design interface that
can be connected to a circuit board interface. The module
interface tracer 340 can trace connections to the module
across one or more hierarchical levels of the circuit design.
For example, an instance of module can be created at a lower
level of the design hierarchy, and the connections to the
module traced to the top-level of the design hierarchy, where
a circuit design interface can be created. In an example, the
interface enumerator 331 can further enumerate circuit
design interfaces of the circuit design that have been
exposed by the module interface tracer 340. A user can
connect a given circuit board interface to a given circuit
design interface in the circuit design through the GUI 314.

FIG. 7 is a flow diagram depicting an example of a
method 700 of implementing a circuit design in a circuit
design tool. The method 700 begins at block 702, where the
circuit design tool processes a board file to obtain descrip-
tions of circuit board interfaces. In an example, block 702
can include a block 714, where the circuit design tool merges
multiple board files to create the board file (e.g., a circuit
board and daughter board(s)).

At block 704, the circuit design tool displays a GUI to
connect circuit board interface(s) as described in the board
file to circuit design interface(s). In an example, block 704
includes blocks 716 and 718. At block 716, the circuit design
tool infers circuit design interface(s) from module interface
(s) of modules in the circuit design. At block 718, the circuit
design tool enumerates the circuit board interfaces and the
circuit design interfaces for connection.

At block 706, the circuit design tool generates physical
constraints on the circuit design interface(s) with respect to
programmable IC input/outputs described as being con-

US 9,465,903 Bl

11

nected to selected circuit board interfaces(s). At optional
block 708, the circuit design tool performs circuit board
interface group checking to verify that a given module is not
connected to circuit board interfaces in different groups. At
optional block 710, the circuit design tool customizes
parameters of module(s) in the circuit design based on
customized parameters in the board file. At block 712, the
circuit design tool generates a bitstream to configure a
programmable IC having a physical implementation satis-
fying the physical constraints.

FIG. 8 is a flow diagram depicting an example of a
method of inferring circuit design interfaces that can be
employed in block 716 of the method 700. Block 716 can
begin at block 802, where the circuit design tool identifies
module interface(s) of a module in the circuit design. At
block 804, the circuit design tool identifies top-level ports of
the circuit design connected to the module interfaces. At
block 806, the circuit design tool groups the identified
top-level ports into circuit design interface(s) that can be
connected to circuit board interfaces.

The various examples described herein may employ vari-
ous computer-implemented operations involving data stored
in computer systems. For example, these operations may
require physical manipulation of physical quantities—usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
example implementations may be useful machine opera-
tions. In addition, one or more examples also relate to a
device or an apparatus for performing these operations. The
apparatus may be specially constructed for specific required
purposes, or it may be a general purpose computer selec-
tively activated or configured by a computer program stored
in the computer. In particular, various general purpose
machines may be used with computer programs written in
accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to
perform the required operations.

The various examples described herein may be practiced
with other computer system configurations including hand-
held devices, microprocessor systems, Mmicroprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more examples may be implemented as one or
more computer programs Or as one or more computer
program modules embodied in one or more computer read-
able media. The term computer readable medium refers to
any data storage device that can store data which can
thereafter be input to a computer system—computer read-
able media may be based on any existing or subsequently
developed technology for embodying computer programs in
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a
Compact Disc (CD)-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled
computer system so that the computer readable code is
stored and executed in a distributed fashion.

While the foregoing is directed to specific examples, other
and further examples may be devised without departing

5

20

25

30

40

45

55

65

12

from the basic scope thereof, and the scope thereof is
determined by the claims that follow.

What is claimed is:

1. A method of implementing a circuit design in a circuit
design tool for configuration in a programmable integrated
circuit (IC) connected to components on a circuit board, the
method comprising:

processing a first file associated with the circuit board to

obtain descriptions of circuit board interfaces of the
components on the circuit board;

merging a second file associated with a daughter circuit

board connected to the circuit board with the first file
associated with the circuit board, the second file includ-
ing descriptions of circuit board interfaces of compo-
nents on the daughter circuit board;

displaying a graphic user interface (GUI) of the circuit

design tool to connect a selected circuit board interface
described in the first file with a circuit design interface
in the circuit design;

generating physical constraints on the circuit design inter-

face with respect to input/outputs of the programmable
IC described as being connected to the selected circuit
board interface; and

generating a bitstream to configure the programmable IC,

the bitstream including a physical implementation of
the circuit design satisfying the physical constraints.

2. The method of claim 1, wherein the physical constraints
comprise input/output (IO) constraints on ports of the circuit
design interface, the IO constraints defining at least one of
package pin location or 10 standard for each of the ports.

3. The method of claim 1, wherein:

the GUI connects a plurality of circuit design interfaces of

the circuit design to a plurality of selected circuit board
interfaces described in the first file; and

the method further comprises:

processing the first file to identify groups of the circuit
board interfaces; and

checking that the plurality of selected circuit board
interfaces is part of the same group of circuit board
interfaces.

4. The method of claim 1, further comprising:

setting parameters of a module in the circuit design

connected to the circuit design interface based on a
description of the selected circuit board interface in the
first file.

5. The method of claim 1, further comprising:

identifying a module interface of a module in the circuit

design;

identifying top-level ports of the circuit design connected

to the module interface; and

grouping the top-level ports into the circuit design inter-

face.

6. The method of claim 1, wherein the GUI of the circuit
design tool enumerates circuit design interfaces of the circuit
design and the circuit board interfaces described in the first
file.

7. The method of claim 6, wherein the circuit design
interfaces enumerated in the GUI of the circuit design tool
are inferred from module interfaces of at least one module
in the circuit design.

8. A non-transitory computer readable medium compris-
ing instructions, which when executed in a computer system,
causes the computer system to carry out a method of
implementing a circuit design in a circuit design tool for
configuration in a programmable integrated circuit (IC)
connected to components on a circuit board, the method
comprising:

US 9,465,903 Bl

13

processing a first file associated with the circuit board to
obtain descriptions of circuit board interfaces of the
components on the circuit board;
merging a second file associated with a daughter circuit
board connected to the circuit board with the first file
associated with the circuit board, the second file includ-
ing descriptions of circuit board interfaces of compo-
nents on the daughter circuit board;
displaying a graphic user interface (GUI) of the circuit
design tool to connect a selected circuit board interface
described in the first file with a circuit design interface
in the circuit design;
generating physical constraints on the circuit design inter-
face with respect to input/outputs of the programmable
IC described as being connected to the selected circuit
board interface; and
generating a bitstream to configure the programmable IC,
the bitstream including a physical implementation of
the circuit design satisfying the physical constraints.
9. The non-transitory computer readable medium of claim
8, wherein the physical constraints comprise input/output
(IO) constraints on ports of the circuit design interface, the
10 constraints defining at least one of package pin location
or IO standard for each of the ports.
10. The non-transitory computer readable medium of
claim 8, wherein:
the GUI connects a plurality of circuit design interfaces of
the circuit design to a plurality of selected circuit board
interfaces described in the first file: and
the method further comprises:
processing the first file to identify groups of the circuit
board interfaces; and
checking that the plurality of selected circuit board
interfaces is part of the same group of circuit board
interfaces.
11. The non-transitory computer readable medium of
claim 8, further comprising:
setting parameters of a module in the circuit design
connected to the circuit design interface based on a
description of the selected circuit board interface in the
first file.
12. The non-transitory computer readable medium of
claim 8, further comprising:
identifying a module interface of a module in the circuit
design;
identifying top-level ports of the circuit design connected
to the module interface; and

20

25

30

35

40

14

grouping the top-level ports into the circuit design inter-

face.

13. The non-transitory computer readable medium of
claim 8, wherein the GUI of the circuit design tool enumer-
ates circuit design interfaces of the circuit design and the
circuit board interfaces described in the first file.

14. The non-transitory computer readable medium of
claim 13, wherein the circuit design interfaces enumerated in
the GUI of the circuit design tool are inferred from module
interfaces of at least one module in the circuit design.

15. A circuit design system, comprising:

a memory to store circuit design tool code; and

a central processing unit (CPU) that executes the circuit

design tool code to:

process a first file associated with a circuit board to
obtain descriptions of circuit board interfaces of
components on the circuit board;

merge a second file associated with a daughter circuit
board connected to the circuit board with the first file
associated with the circuit board, the second file
including descriptions of circuit board interfaces of
components on the daughter circuit board;

display a graphic user interface (GUI) to connect a
selected circuit board interface described in the first
file with a circuit design interface in a circuit design;

generate physical constraints on the circuit design
interface with respect to input/outputs of a program-
mable IC described as being connected to the
selected circuit board interface; and

generate a bitstream to configure the programmable IC,
the bitstream including a physical implementation of
the circuit design satisfying the physical constraints.

16. The circuit design system of claim 15, wherein the
GUI connects a plurality of circuit design interfaces of the
circuit design to a plurality of selected circuit board inter-
faces described in the first file, and wherein the CPU further
executes the circuit design tool code to:

process the first file to identify groups of the circuit board

interfaces; and

check that the plurality of selected circuit board interfaces

is part of the same group of circuit board interfaces.

17. The circuit design system of claim 15, wherein the
CPU further executes the circuit design tool code to:

set parameters of a module in the circuit design connected

to the circuit design interface based on a description of
the selected circuit board interface in the first file.

#* #* #* #* #*

